Time-Memory Trade-Offs Using Sparse Matrix Methods for Large-Scale Eigenvalue Problems

نویسندگان

  • Keita Teranishi
  • Padma Raghavan
  • Chao Yang
چکیده

Iterative methods such as Lanczos and Jacobi-Davidson are typically used to compute a small number of eigenvalues and eigenvectors of a sparse matrix. However, these methods are not effective in certain large-scale applications, for example, “global tight binding molecular dynamics.” Such applications require all the eigenvectors of a large sparse matrix; the eigenvectors can be computed a few at a time and discarded after a simple update step in the modeling process. We show that by using sparse matrix methods, a direct-iterative hybrid scheme can significantly reduce memory requirements while requiring less computational time than a banded direct scheme. Our method also allows a more scalable parallel formulation for eigenvector computation through spectrum slicing. We discuss our method and provide empirical results for a wide variety of sparse matrix test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Performance Algorithms for Large-Scale Singular Value Problems and Big Data Applications

As ”big data” has increasing influence on our daily life and research activities, it poses significant challenges on various research areas. Some applications often demand a fast solution of large, sparse singular value problems; In other applications, extracting knowledge from large-scale data requires many techniques such as statistical calculations, data mining, and high performance computin...

متن کامل

A Communication-Avoiding Thick-Restart Lanczos Method on a Distributed-Memory System

The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. On a modern computer, communication can dominate the solution time of TRLan. To enhance the performance of TRLan, we develop CA-TRLan that integrates communication-avoiding techniques into TRLan. To study the numerical stability and solution time of CA-TRLan, we conduct numeric...

متن کامل

Practical first order methods for large scale semidefinite programming

This paper investigates first order methods for solving large scale semidefinite programs. While interior point methods are (a) theoretically sound and (b) effective and robust in practice, they are only practical for small scale problems. As the dimension of the problem increases, both the space and time needed become prohibitive. We survey first order methods which have been proposed in the l...

متن کامل

Stream ciphers and the eSTREAM project

Stream ciphers are an important class of symmetric cryptographic algorithms. The eSTREAM project contributed significantly to the recent increase of activity in this field. In this paper, we present a survey of the eSTREAM project. We also review recent time/memory/data and time/memory/key trade-offs relevant for the generic attacks on stream ciphers.

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003